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Abstract. We show the existence of a polynomial system of degree four having
three real invariant straight lines forming a triangle with at least three small am-
plitude limit cycles in the interior. Also, we obtain the necessary and sufficient
conditions for the critical point at the interior of the bounded region to be a center.

1. Introduction

Let us consider a real autonomous system of ordinary differential equations on the
plane with polynomial nonlinearities.

(1) ẋ = P (x, y) =

n
∑

i+j=0

aijx
iyj, ẏ = Q(x, y) =

n
∑

i+j=0

bijx
iyj , with aij , bij ∈ R

Suppose that the origin of (1) is a critical point of center-focus type. We are
concerned with two closely related questions, both of which are significant elements
in work on Hilbert’s 16th Problem. The first is the number of limit cycles (that is,
isolated periodic solutions) which bifurcate from a critical point and the second is
the derivation of necessary and sufficient conditions for a critical point to be a center
(that is, all orbits in the neighborhood of the critical point are closed).

In order to describe Hilbert’s 16th Problem more precisely, let Sn be the collection
of systems of form (1), with P and Q of degree at most n, and let π(P, Q) be the
number of limit cycles of (1). We let (P, Q) denote system (1) and define the so-called
Hilbert numbers by

Hn = Sup {π(P, Q); (P, Q) ∈ Sn} .
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The problem consists of estimating Hn in terms of n and obtaining the possible
relative configurations of the limit cycles.
This is the second part of the 16th Problem, which is contained in the famous list of
problems proposed by Hilbert at the International Congress of Mathematicians held
in Paris in 1900.

2. Limit cycles and center conditions

Let us assume that the origin is a critical point of (1) and transform the system to
canonical form

ẋ = λx + y + p(x, y), ẏ = −x + λy + q(x, y),

where p and q are polynomials without linear terms. For the origin to be a center we
must have λ = 0. If λ = 0 and the origin is not a center, it is said to be a fine focus.

The necessary conditions for a center are obtained by computing the focal values.

These are polynomials in the coefficients arising in P and Q and are defined as follows.
There is a function V, analytic in a neighborhood of the origin, such that the rate
of change along orbits, V̇ , is of the form η2r

2 + η4r
4 + · · · , where r2 = x2 + y2. The

focal values are the η2k, and the origin is a center if and only if they are all zero.
However, since they are polynomials, the ideal they generate has a finite basis, so
there is M such that η2ℓ = 0, for ℓ ≤ M, implies that η2ℓ = 0 for all ℓ. The value of
M is not known a priori, so it is not clear in advance how many focal values should
be calculated.

The software Mathematica [11] is used to calculate the first few focal values. These
are then ‘reduced’ in the sense that each is computed modulo the ideal generated by
the previous ones: that is, the relations η2 = η4 = · · · = η2k = 0 are used to eliminate
some of the variables in η2k+2. The reduced focal value η2k+2, with strictly positive
factors removed, is known as the Lyapunov quantity Lk. Common factors of the
reduced focal values are removed and the computation proceeds until it can be shown
that the remaining expressions cannot be zero simultaneously. The circumstances
under which the calculated focal values are zero yield the necessary center conditions.
The origin is a fine focus of order k if Li = 0 for i = 0, 1, ..., k − 1 and Lk 6= 0. At
most k limit cycles can bifurcate out of a fine focus of order k; these are called small

amplitude limit cycles.

Various methods are used to prove the sufficiency of the possible center conditions.
Of particular interest to us in this paper is the symmetry.
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3. Polynomial systems having real invariant straight lines

As Hilbert’s 16th Problem (second part) consists of estimating the number Hn of
limit cycles of polynomial vector fields of degree n on the plane, and in order to make
some progress on understanding this long-standing unsolved problem, researchers
have considered several particular versions of it. For instance, some authors have
considered the problem of estimating the number Hn of limit cycles of polynomial
systems on the plane of degree n having l real invariant straight lines, where the real
straight line ax+by+c = 0 is invariant for the flow of (1) and is called a real invariant
straight line if

aP (x, y) + bQ(x, y) = (ax + by + c)R(x, y)

for some real polynomial R.

In the literature several results are known for the existence of limit cycles in poly-
nomial systems of degree n that have more than one real invariant straight line.

If we denote Hn(l) as the number of limit cycles of (1) where l is the number of
invariant straight lines and n the degree of the system, the following results are known

H2(2) = 0 N. N .Bautin [1]

H2(1) ≤ 1 L. A. Cherkas and L. I. Zhilevich [2], [8]

H3(5) = 0 Dai Guoren and Wo Songlin [3]

Hn( (n−1)(n+2)
2

) = 0 Suo Guangjian and Sun Jifang [10]

H3(4) ≤ 1 R. Kooij [4]

H3(2) ≥ 4 N. G. Lloyd, J. M. Pearson, E. Sáez, and I. Szántó [6]

H3(2) ≥ 6 N.G.Lloyd, J. M. Pearson, E. Sáez, and I. Szántó [7]

H3(3) ≥ 2 Ye Yanqian and Ye Weiyin [13]

H3(3) ≥ 4 E. Sáez, I. Szántó and E. Gonzalez-Olivares [9]

In this paper, we discuss the particular problem of those systems that have three
real invariant straight lines that form a triangle, called an invariant triangle. As the
triangle is a graph, there is at least one singularity inside. We will assume that it is
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a fine focus type singularity.

In 1954, N. N Bautin in [1], shows that for a quadratic system (n = 2), the system

ẋ = x(a + bx + cy), ẏ = y(d + ex + fy)

with two invariant straight lines has no limit cycles. Thus for a quadratic polynomial
system with an invariant triangle has no limit cycles inside the triangle.

For n = 3, Ye Yanqian in [12] considers a class of systems

ẋ = x[a0(1 − x2) + a1x(1 − x) + a2y + a4xy + a5y
2]

ẏ = y[b0(1 − y2) + b1x + b2y(1 − y) + b3x
2 + b4xy]

with an invariant triangle whose sides are real invariant straight lines x = 0, y = 0
and x + y = 1, and whose vertices are saddles.
Under certain conditions of the coefficients, the relative positions of other critical
points of the cubic system and its invariant straight line with respect to the invariant
triangle are determined. In all of the cases, no limit cycles are found.

Z. H. Liu et. al [5] consider a class of cubic systems given by

Xµ :







ẋ = (−1 + abx)(−cx − (a2 + ab − abc − b2c)x2 + y + (2a2−
ab + a2b − b2 + ab2 − abc)xy + (ab − 2a2b)y2)

ẏ = (−1 + aby)(−x + (a2 + ab2 + b3)xy − (a2b + ab2)y2)

where µ = (a, b, c) ∈ R
3

These systems have three real invariant straight lines forming a triangle surround-
ing at least one limit cycle, where the small amplitude limit cycles are limit cycles
which bifurcate out of a nonhyperbolic focus.
The existence of a cubic system with an invariant triangle containing more than one
limit cycle remains an open problem.

4. Main Results (n = 4)

We show the existence of a polynomial system of degree four having three real
invariant straight lines that form a triangle with at least three small amplitude limit
cycles in the interior.

Let us consider a class of system of degree four
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(2) Xµ :

{

ẋ = P (x, y) + bR(x, y)
ẏ = Q(x, y) + bS(x, y)

where

P (x, y) = (1 + x)(a3λx − a3y − 4xy + a2xy + a3λxy − 4y2 − 4ay2 + a2y2)
Q(x, y) = (1 + y)(a3x − a2x2 − a2λx2 − a3λx2 + 4xy + 4axy − a2xy−

a2λxy + 4y2)

and
R(x, y) = (1 + x)y2(1 + y)
S(x, y) = (1 + y)(ax2 − x3 − axy − y2),

with µ = (a, λ, b) ∈ R
3 , a > 0.

Lemma 1 System (2) has three real invariant straight lines, namely,

x = −1 , y = −1 and x + y = a.

For a > 0 the straight lines form a triangle surrounding the origin.

Proof. It is clear that x = −1 and y = −1 are invariant straight lines, and for
the line x + y = a, we have

ẋ+ ẏ = (−a+x+y)(−a2x−a2Lx−ex2 +a2y−4xy+exy−a2Lxy−ex2y+4y2+exy2).

Finally for a > 0, the lines form a triangle surrounding the origin and this proves
the Lemma.

Theorem 1 If λ = 0, a = 2 and b = 24
7
, then system (2), at the singularity

(0, 0), has a repelling fine focus of order 3 .

Proof. Rescaling the time {t → 1
a3 t}, the linear part of (2) at the singularity (0, 0)

is

DXµ(0, 0) =

(

λ −1
1 0

)

If λ = 0, we consider µ̃ = (a, 0, b), and we have that divXµ̃(0, 0) = 0 and
detDXµ̃(0, 0) = 1, then the critical point (0, 0) is a fine focus.

Using the symbolic calculus of the Mathematica Software [11], we are able to com-
pute the Lyapunov constants Lk, k = 0, 1, 2, 3 and then to determine the topological
type of the singular point at the origin.

If λ = 0 then

L0 = 0 , L1 = (a − 2)(a + 1)(b − 4)(b − 4 − 2a)

If a = 2 we have : L1 = 0 , L2 = b2(b − 4)(7b − 24) , and
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L3 = b2(b − 4)(97b3 − 481b2 − 34b + 1680).

If b = 24
7
, L2 = 0 and L3 = 243

1882384
and this proves that system (2), at the

singularity (0, 0), has a repelling fine focus of order 3 .

Theorem 2 System (2) with a > 0 has a center at the origin, if and only if, λ = 0
and b = 4.

Proof. If λ = 0 and b = 4, then system (2) is given by

(3) X(a,0,4) :

{

ẋ = y(1 + x)(−a3 − 4x + a2x − 4ay + a2y + 4y2)
ẏ = x(1 + y)(a3 + 4ax − a2x − 4x2 + 4y − a2y)

¿From the linear part at the origin, it is clear that the condition λ = 0 is necessary
to have a center. On the other hand, for b = 4, Lk = 0, ∀k and this shows that the
conditions are necessary.

To show the sufficiency, we can take a rotation

x =
u + v

2
, y =

−u + v

2

and we obtain the new system

u̇ = P (u, v) = (4u2 − 4au2 + a3u2 − u4 − 2a3v + 8u2v + 2au2v−
a2u2v − 4v2 − 4av2 + 2a2v2 − a3v2 − 2av3 + a2v3 + v4)/2

v̇ = Q(u, v) = 2u(−a + v)(−a2 + u2 − 4v − v2)

As the symmetries P (−u, v) = P (u, v) and Q(−u, v) = −Q(u, v) are satisfied, we
prove the sufficiency that system (2) has a center at the origin.

Theorem 3 In the parameter space R
3, there exists an open set N , such that for

all (a, λ, b) ∈ N with b 6= 0 and a > 0, then system (2) has three small-amplitude
limit cycles coexisting with an invariant triangle.

Proof. It has been shown that systems Xµ have a invariant triangles surrounding
the origin. If a > 0, then by Theorem 1, system (2) has at the singularity (0, 0) a
repelling weak focus of order 3 if λ = 0, a = 2 and b = 24

7
. Perturbing the system

by reversing the stabilities, a limit cycle is created (Hopf Bifurcation). By following
the same process until all the Lyapunov constants are non-zero, three hyperbolic
small amplitude limit cycles are created.
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